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Numerical solutions for laminar incompressible fluid flows past an abruptly 
started elliptic cylinder at 45" incidence are presented. Various finite-difference 
schemes for the stream-function/vorticity formulation are used and their merits 
briefly discussed. Almost steady-state solutions are obtained for Re = 15 and 
30, whereas for Re = 200 a K k m h  vortex street develops. The transient period 
from the start to the steady or quasi-steady state is investigated in terms of 
patterns of streamlines and lines of constant vorticity and drag, lift and moment 
coefficients. 

1. Introduction 
Time-dependent laminar flows of an incompressible fluid past elliptic cylinders 

of infinite span at 45" incidence have been analysed by numerical methods. 
An outline of the procedure used and some initial results were published in a 
recent note (Lugt & Haussling 1971). In  this paper experience gained in the 
application of the numerical techniques is summarized and the computed results 
are presented and discussed. The numerical solutions are supported by some 
experimental data obtained by Honji (1972). 

The literature on vortex shedding behind bodies is extensive. The survey 
papers by Morkovin (1964), v. Krzywoblocki (1966) and Berger & Wille (1972) 
should be mentioned. However, the onset and the process of vortex shedding 
behind bodies which are positioned asymmetrically relative to the main flow 
are not well understood. In  particular, details on how the Kutta condition for 
viscous flows past airfoil-type bodies is established and how the initial vortex is 
generated and shed are missing from the literature. Furthermore, the period 
of transition of flows past abruptly started bodies towards a steady state (if it 
exists) can be monotonic as well as oscillatory depending on the value of the 
Reynolds number. For symmetric motions the transient phase of flows past 
abruptly started bodies is always monotonic. Since numerical computations of 
the kind discussed in this paper are costly the special case of 45" incidence was 
selected. It seems representative for asymmetric flows. A recent investigation by 
Mehta & Lavan (1972) which appeared during the writing of this paper supple- 
ments the findings of the authors with results for a Reynolds number of 1000 
and an angle of attack of 15'. 
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FIGURE 1. Elliptic co-ordinate system and definition of angle of attack a. 

2. The flow problem 
The developing flow due to abruptly starting an elliptic cylinder of infinite 

span in an unbounded incompressible fluid is considered. Mathematically, an 
initial/boundary-value problem for the two-dimensional Navier-Stokes equa- 
tions must be solved. This solution is conveniently carried out in the elliptic 
co-ordinate system (q ,8)  (figure l), which is defined by the transformation 

x + i y  = acosh(q+i8), a > 0,  ( 1 )  

where a is the focal distance. The equations of motion are formulated in terms of 
the dimensionless stream function 1c. and w ,  the dimensionless vorticity com- 
ponent normal to the q,O plane: 

V=$ = w .  

Here, t is the dimensionless time and Re = 2aU/v is the Reynolds number where 
v is the kinematic viscosity and U the magnitude of the constant velocity a t  
infinity. (Sometimes, the Reynolds number Re, = dU/v  with d = 2acosh7, is 
used for practical reasons. In  most cases considered in this paper rl = 0.1, 
so that Re M Re,.) The characteristic length and velocity scales in the dimension- 
less quantities are a and U ,  respectively. In  particular, V is made dimensionless 
using the length a, The coefficient h is defined by h2 = coshzq - cos26. 

The contour of the ellipse is the constant co-ordinate line q = ql (figure 1). 
An infinitely thin plate is represented by ql = 0 while for a circular cylinder 
ql = co. On this line boundary conditions are prescribed such that the velocity 
vector v is zero. The dimensionless velocity components v8 and vd are related to 
@ by the equations 

Thus, at  the body surface the boundary conditions are 
7 = - h-1 a @ p ,  vd = h-1 a@/aq. (4) 

$- = a$/aq = 0 a t  q = ql .  ( 5 )  
Here, the constant value of @ is chosen to be zero. Far away from the body, a 
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uniform parallel flow with velocity U is assumed, where the vector U is specified 
by a and U (figure 1). In  terms of 11. the conditions are 

The initial condition shall simulate the state after the abrupt start of the body in 
the infinitesimal time span from t = 0 - (when the fluid is a t  rest) to t = 0 + 
(when the irrotational disturbance is felt in the entire field owing to the infinite 
speed of sound). Thus, at t = 0 + the initial condition consists of the potential- 
flow solution and a vorticity sheet at  the body surface which is due to the 
adherence of the fluid to the surface. 

In  order to compute the drag, lift and torque on the body by means of flow 
quantities a t  the body surface, the pressure distribution on the surface of the 
body must be determined. From the Navier-Stokes equations it follows that 

a@laq = hsin(O-a), a$/a8 = hcos (8-a)  a t  q = 00. (6) 

(7) 

where o is the dimensionless vorticity vector and the pressure has been made 
dimensionless using pU2, The quantity p is the density of the fluid. The surface 
pressure is computed from the 8 component of (7) to be 

where pc is the pressure a t  (ql ,  in), a subscript 1 denotes a value a t  ql and the 
integral represents the dimensionless vorticity flux over the surface interval from 
&r to 8. The point (ql, in) is selected for numerical reasons. The pressure pc  is 
obtained from the 7 component of (7) by prescribing the value of p at 7 = 00 to 
bep- = 0: 

(9) 

The drag coefficient is defined by 

CD = drag/ipVacoshq, (10) 
and consists of two parts, the drag coefficient due to  pressure and that due t o  
friction: CD = CDP+CBB, with 

C,, = - 2 tanh ql cos a pl cos 8 d8 - 2 sin a (11) 

4 
CDp = ~e [ - cos a ] r w l  sin 8 dB + tanh q1 sin aI02" w1 cos OdO] . (12) 

Equation (1  1) is simplified by means of (8) to become 

Correspondingly, the lift coefficient is 
C, = liftlip U2a cosh ql, 

with 
C - -[ 4 -tanhplsina10 2n (-) aw sin8d8-cosa/o 2" (-) aw cosBdO], (15) 

L p  - Re a7 1 a7 1 

4 
C,, = Re [sin alOzn w1 sin 8 d8 + tanh ql cos aJo2" w1 00s 8 do] . 
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The moment coefficient is 

H .  J .  Lugt and H .  J .  Hawsling 

C,, = torquelap P a 2  cosh2 ql, 

with 
zn aw sin2 8d8, 2 

= Re cosh2 ql so (q) 
3. Numerical analysis 

The infinite domain of integration in the q ,  8 plane is replaced by a finite 
network of points specified by (ql + (i - 1) Aq, (j - &) As),  with i = 1, . , ., L and 
j = 1, ..., M .  The differential equations are replaced by difference equations 
involving the values of the variables a t  these grid points. For all cases L = 75 
and A7 = 0.05, but various values of M (= 277lA8) are used. For small ql the 
outer boundary 7 = qL = ql + ( L  - 1) Aq is about 11 plate lengths from the body 
centre, There are no grid points specified a t  the tips of the ellipse. Earlier numeri- 
cal computations for ellipses with high curvature (ql < 0.1) revealed a much 
greater numerical stability for a grid which excluded the tip points than for a 
grid which included these points on the boundary (Lugt & Ohring 1971). In  this 
reference, curves for the surface vorticity and surface pressure are presented for 
grids with and without tip points. The agreement is very good. Computations for 
ql = 0 are possible only when there are no grid points a t  the tips. 

The numerical solution of the initiallboundary-value problem stated in the 
previous section poses two essential difficulties: the approximation of the dif- 
ferential operators in (2) and (3) through suitable difference schemes, and the 
prescription of boundary conditions for the outer boundary, where q = qL < 03 

in the numerical scheme. There is no general numerical technique to resolve these 
problems. For the vorticity equation (2) two popular methods have been ex- 
amined: the implicit Peaceman-Rachford scheme and the explicit Du Fort- 
Frankel scheme (Roache 1972, pp. 61 and 91). With the first technique the time 
increment At is limited by the number of iterations needed for obtaining accurate 
values with the second one the solution becomes unstable beyond a certain 
value At,,, of At. It is found that the DuFort-Frankel scheme for the problem 
studied is 20-40 yo more efficient than the Peaceman-Rachford method while the 
accuracy is the same. Therefore, the DuFort-Frankel scheme is applied. Equation 
(2) yields, when solved for qj at the (n + 1)th time step, the system of equations 

I 

where the the Jacobian is 
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and the velocity components are 

It is recognized that central-difference schemes for the Jacobian cause oscilla- 
tions in w which result in ‘cancer cells’ (Rimon 1969). These oscillations destroy 
the quality of the solutions for larger Reynolds numbers unless smaller space 
increments are employed. Hence, the capacity of the computer sets an upper limit 
on the Reynolds number. With the space increments A7 = 0.05 and A0 N 6” 
generally used in this report, the upper limit is about Re, = 500. Mehta & 
Lavan’s (1972) grid is denser near the body in order to resolve the higher vorticity 
gradients which occur a t  Re, = 1000. However, their grid is much coarser than 
the present grid in the region away from the body. Thus, Mehta & Lavan could 
simulate with accuracy only the early phase of the flow at Re, = 1000 when vor- 
ticity is confined to the vicinity of the body. 

Equation (3) is approximated by a five-point formula which yields for $i,j 

h , j  = *((A7)2+ (A0)2)-1 (@i+l,j + h-lJ 
+ (A7I2 (@i,j+l +h,j-l)  - (A7A0)2h:,jwi,j1. (23) 

The system of algebraic equations (23) is solved in three ways. The first method 
is the Gauss-Seidel successive line overrelaxation (SLOR) applied along lines of 
constant 7. See for instance Roache (1972, p. 119). The overrelaxation factor is 
1.82. The iteration process is halted after the kth iteration if 

IV2@”dq < e (24) 

at each grid point, where E is of the order The number of iterations 
depends on the nature of the flow field. For Re = 200, a = 45”) ql = 0.1 and 
8 = 0.002 the growth of the vortices attached behind the body requires about 
60 iterations per time step, whereas vortex separation needs about 130 iterations. 

During the course of this study it was found (Lugt & Ohring 1973) that use of 
either the Buneman algorithm (Buzbee, Golub & Nielson 1970) or the Fourier 
analysis/cyclic reduction technique (Hockney 1970) is superior to SLOR in 
terms of efficient use of computer time. Buneman’s solution process corresponds 
on a CDC 6700 computer to 8 iterations with SLOR for the 75 x 64 grid. With 
60-130 iterations per time step for SLOR the Buneman method is about 7.5-16 
times faster. Hockney’s technique is even twice as fast as Buneman’s ! In  addi- 
tion, SLOR is not as accurate as the other two methods if E = 0.002. 

For most cases in which SLOR is appliedM is taken to  be 60 and thus A0 = &n-. 
In  special instances M = 80 is chosen. The Buneman and Hockney methods re- 
quire, respectively, the following numbers of grid points in each co-ordinate 
direction: L arbitrary with M = 2m (or vice versa, where m is an integer); 
(L- 1) = M = 3 x 2m or 2m. In  the present study L = 75 with M = 64 for Bune- 
man’s method; (L-  I)  = M = 96 for Hockney’s method, which is used only as 
a test case. 

At the body surface a one-sided difference scheme must be used in order to cal- 
culate the vorticity That this approximation strongly affects the numerical 

or 
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stability of the DuForb-Frankel scheme was demonstrated in a previous investi- 
gation (Lugt & Rimon 1970). By trial and error it was found that the formula 

w1.j = [47E~,j(A7)21-1($z,j+411r3,j-11r-,j) (25) 

yields the best results. This equation is derived from the Taylor series expansions 
with the no-slip condition (a#/aq)l,j = 0 incorporated: 

By using wl, = (h-2 a2$-/aq2)1, and replacing ( a@/a7)i, with 

(2Ay)-l ($$+I, j - 11ri-1,j) + O[(A?)'I (27) 

one arrives a t  (25). Hence, Taylor series expansions are used which result in an 
expression for w S j  with error of second order in AT. However, when first deriva- 
tives a t  inner points are replaced by finite differences, the final formula for wl,j 
is of the first order. The hybrid form (25) is more stable than the first-order 
approximation 

w1,j = 2$z,j/@,j(A7)z + O(A7) (28) 

used by most other investigators and much more stable than second-order 
approximations investigated, for instance, 

%,j = [2h:,j(A7)z11-1 (8$z,j -$3,j) f o(A7)21. (29) 

In  fact, it was found that At,,, is about 10 times smaller for (28) and 100 times 
smaller for (29) than At,,, for (25). However, the statement that (25) is superior 
to (28) when used with the DuFort-Frankel scheme is not valid in general. For 
instance, in other work (Lugt & Haussling 1972) it was found that (25) and (28) 
were comparable with regard to stability. In  this instance, plane wall boundaries 
occur, It is thus conjectured that the curvature of the surface is important when 
comparing the usefulness of (25) and (28). 

Since the domain of numerical integration is bounded, severe difficulties are 
encountered in prescribing the conditions at the outer boundary 7 = yL. This 
boundary is almost circular and is divided in half. On the upstream half of the 
boundary, conditions (6) are used with the alteration that the second condition 
is replaced by vanishing vorticity : 

In  difference form 

(a$/a7)L,i = hL,jsin[(j-+)Ae-a], G J ~ , ~  = 0. (31) 

On the downstream half of the boundary a$/a7 and w cannot be prescribed as 
in (30). Some time after the abrupt start, depending on the size of the computa- 
tional region, vorticity and associated deviations from parallel flow reach the 
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downstream boundary. The boundary conditions must allow d+/dq and w to 
vary with time. The inclusion of this time variation is achieved by using condi- 
tions which represent the convection of vorticity and momentum across the 
border with velocity U. Such a condition was proposed by Dawson & Marcus 
(1970) for the vorticity only and is applied here as follows: 

aw 1 
at u -+-(U.V)w = 0 on 7 = qL, +n+a < 6 -= @r+a. 

For $ they prescribed parallel streamlines. In  this paper the idea of convecting 
flow quantities across the border is extended to the 8 component of momentum 
to give a time-dependent boundary condition for a$/aq : 

[ Z + & J . V )  v = 0. 
l o  

(33) 

The conditions (32) and (33) replace the conditions of (6). Both (32) and (33) 
follow from the argument that near the outer boundary diffusion is small, and 
the flow is approximately steady in a reference frame moving with the free- 
stream velocity U. Then, the momentum equation is 

(v-U/U).Vv+Vp = 0. (34) 

Subtracting (34) from (7) with no diffusion and taking the 8 component of the 
result yields (33). Condition (32) is justified similarly by using the vorticity 
equation. It is believed that the boundary conditions (32) and (33) come closer 
to the actual boundary conditions (which are unknown for a finite domain until 
the complete problem is solved !) than previously used conditions which have been 
reported in the literature. For example, methods which prescribe vanishing 
vorticity and even those which require only parallel flow impose unrealistic 
restrictions for vorticity shedding which are not present in (32) and (33). Mehta & 
Lavan (1972) modified the boundary conditions (32) and (33), which were pub- 
lished in Lugt & Haussling ( 1971), by replacing the free-stream velocity U/U with 
the local velocity v. The use of the local velocity v implies that V p  is neglected. 
However, experiments by Timme (1957) revealed that the vortices which are 
shed downstream are of Hamel-Oseen type and thus have a pressure distribu- 
tion with non-vanishing Vp. The Hamel-Oseen type of behaviour is also indicated 
by the numerical results in this paper and is discussed below (figure 16). A fur- 
ther argument that Vp is not negligible was provided by one of the referees of this 
paper, who pointed out that dimples on a free surface are clearly visible far 
downstream in a periodic wake. An estimate of Vp with the aid of (34) also shows 
that for the present model V p  is of the same order of magnitude as the other 
terms in that equation. It should be mentioned that Mehta & Lavan did not com- 
pute the flow development for Re, = 1000 long enough for vorticity to reach the 
outer boundary. With the difference approximations of (32) and (33) the values 
of o and a$/aq are computed on the boundary q = yL: 

(cos a sinh qL cos 8, + sin a cosh rL sin 8,) 

11 , + (sin a sinh qL cos 6, - cos a cosh qL sin 0,) f4, i +;;;E. i - 1 (35) 



H .  J .  Lugt and H .  J .  Haussling 

(cos u sinh qL cos 8,+1 + sin a cosh qL sin 8,+1) 
L, i+l 

- ( ~ o s a s i n h q ~ c o s 8 ~ _ ~ + s i n a c o s h q ~ s ~ n ~ ~ _ ~ )  W ; L , $ - & L , ~ - ~  

+ (sin a sinh qL cos 8,+1 - cos u cosh qL sin Oj+,) w ? ~ ,  i+l/hL,j+l 
- (sin a sinh qL cos 8,-1 - cos a cosh qL sin 1 9 - ~ )  w ; ~ ,  i-#iL,j-l 

+ 2A8 (cos u sinh qL cos Oj + sin a cosh qL sin Si) wz,  . (36) I 
The flow is considered to be started impulsively within an infinitesimal 

time interval. Thus at t = O f  the motion is assumed to be irrotational except 
a t  the body surface, where the no-slip condition produces a vorticity sheet. 
Such a singular initial condition presents problems for any numerical scheme. 
Series expansions have been developed to handle this situation (Gortler 1948; 
Wang 1967; Staniforth 1972). However, the convergence of these series is so slow, 
especially for thin ellipses, that  their use is impractical in this study. Comparison 
of series expansions and numerical methods for thick ellipses shows good agree- 
ment except very close to t = 0 (Staniforth 1972). For thin ellipses, as will be 
demonstrated below, the numerical scheme produces results which agree well 
with experiments. 

The integration process is carried out in the following way. The vorticity 
w t t l  for the advanced time step n + I is computed a t  the interior points according 
t o  (20). Next, wZ3' and (8$-/8q);;l are determined a t  the downstream boundary 
points by means of (35) and (36). Then $ptl is calculated with the aid of (23). 
The cycle concludes with the calculation of w::' from (25). 

The maximum stable time step At,,, for the DuFort-Frankel scheme, beyond 
which numerical instability occurs, is determined by increasing the time step 
until oscillations from one time step to another appear in the w values near the 
tips. The magnitude of Atmax depends on factors other than the approximation 
for ol. It is a linear function of the Reynolds number, a t  least for Re q 200, 
and decreases rapidly as either Aq, A8  or q1 approaches zero (Rimon 1969). 
There seems to be no dependence on a. If ql is changed from 0.05 to 0.1, At,,, 
increases fourfold. For rl = 0.1 and a 75 x 60 grid, the approximate values of 
At,,, are 0.0004, 0.0007 and 0.005 for Re = 15, 30 and 200 respectively. Smaller 
time steps are necessary near t = 0,  when the flow field changes rapidly. 

The accuracy of the computations is checked by varying the size of the mesh 
cell and by comparing different numerical techniques. 

The numerical calculation of the drag, lift and moment coefficients is achieved 
through the approximation of the integrals in (1 I)-( 19). For example the second 
integral in the expression (12) for C,, is approximated by 

ill 

j=1 
~ o z " w l  cos 8 d8 = 'c A h , ,  cos (( j - 4) As}. (37) 

Computations were carried out in double precision on an IBM 360-91 com- 
puter and in single precision on a CDC 6700 computer. The graphic display of 
streamlines and lines of constant vorticity was produced with a Datagraphjx 
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Re, 71 tiins, Grid 
15 0.1 7.2 74 x 60 
30 0.1 20 75 x 60,75 x 64 

200 0.1 30 7 5 x 6 0 , 7 5 ~ 8 0 , 7 5 ~ 6 4  
200 0-2 12 75 x 60,75 x 80 
200 1.0 1.8 75 x 64 

TABLE 1 

4020 Computer Recorder. Streamlines about the elliptic cylinders are plotted for 
the values $ = 0-lm where m = . . . - 2, - 1) 0,  1 ,2 ,  . . . . Lines of constant vorticity 
are constructed for w = (m + &) Aw. For Re = 200, Aw = 2, while for the other 
cases Aw = 1.6. 

The cases computed are listed in table 1. 

4. Results 
In  the limiting case Re = 0 steady-state solutions for two-dimensional flows 

with the boundary conditions (5) and (6) do not exist (Stokes' paradox). However, 
the flow characteristics for 0 < Re 1, in which case inertial forces are almost 
absent, can be discussed with the aid of the streamline and vorticity patterns in 
the central part of elongated ellipsoids for Re = 0. It is argued that the flow 
characteristics in this three-dimensional case, which represents the flow behaviour 
for 0 < Re < 1, are similar to those of the elliptic cylinder for 0 < Re < 1. 
Calculations were made by means of Oberbecks integrals (Lamb 1945, p. 604) 
for various ellipsoids with focal-length ratios ranging from 0.1: 1: 1 to 0.1: 1 : 10 
where the elongated focal length is normal to the flow direction. The results show 
that the streamline and vorticity patterns in the plane through the centre of the 
body and perpendicular to the longest axis are very similar for all cases except 
that the flow field becomes weak for extremely stretched ellipsoids as the Stokes- 
paradox situation is approached. Figure 2 displays patterns for the focal-length 
ratio 0.1 : 1 : 5 .  These patterns are antisymmetric such that the flow direction is 
reversible. The stagnation points are situated very close to the tips, and the zero 
streamlines make a non-zero angle with the chord of the ellipse. As a consequence 
of the antisymmetry no torque is exerted on the body. The steady state is 
approached from the potential-flow solution in a monotonic way (Oseen 1927, 
p. 134). In  this transient phase the stagnation points migrate from the potential- 
flow positions towards the tips. This pure diffusion process can be explained by the 
dipole-type vorticity distribution around the body (Lugt 1972)) which is here 
distorted owing to the 45" angle of incidence. Hence, the local vorticity flux near 
the tips is not symmetric with respect to the chord. This situation leads to a 
faster decrease of the surface vorticity in the regions between each stagnation 
point and its nearest tip. Thus, the stagnation points are pushed towards the 
tips. 

For 0 < Re < 1 the steady-state drag and lift coefficients of elliptic cylinders 
can be obtained from the Oseen approximation of the Navier-Stokes equations. 
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FIGURE 2. Streamlines and equi-vorticity lines around an ellipsoid with axis ratio 0.1: 1: 5 
in the plane normal to the longest axis and passing through the centre of the ellipsoid 
for Re = 0 in the steady state. 

Harrison (1924) found the solutions for a: = 0 and go", from which the values for 
an elliptic cylinder a t  45" incidence can be computed by superposition. 

For non-zero Reynolds numbers inertial effects manifest themselves in a dis- 
tortion of the vorticity generation and spreading. The antisymmetry is lost. 
In  front of the body vorticity spreading is suppressed, in the rear spreading is 
supported. The suppression of the vorticity spreading in front counteracts the 
movement of the front stagnation point from its potential-flow position towards 
the tip. The steady-state location of the stagnation point is between the tip and 
its potential-flow location. The movement of the rear stagnation point to the 
trailing tip is aided by the inertial effects. On the surface the pressure is directly 
related to the vorticity flux. Immediately after the impulsive start, that is at  
t = 0 + , the pressure has a minimum a t  the rear stagnation point, which is not 
yet a t  the tip. It is emphasized that the surface pressure at t = 0 + is not deter- 
mined by the potential flow but by the vorticity sheet adjacent to the surface. 
I n  this sheet ( a w / a ~ ) ~  changes sign at the front and rear stagnation points and thus 
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FIGURE 3. Sequence of streamlines and equi-vorticity lines for Re = 15, ql = 0.1 at various 
times after the abrupt start. Potential flow at t = 0. 

(4 ( b )  (4 (4 
t 1.79 3.79 5.39 6.39 
CB -5.15 - 4.59 - 4.39 - 4.27 

- 2.89 - 2.86 - 2.73 - 2.62 
- 1.74 - 1.52 - 1.41 - 1.37 

CL 
C M  

makes pl  a maximum and a minimum, respectively, according to (8). After a 
short time, from a certain Reynolds number on, a second local pressure minimum 
appears a t  the trailing tip. The numerical results show that when ql = 0.1 this 
phenomenon occurs a t  least for Re 3 15. The second minimum grows in relation 
to the minimum a t  the stagnation point and by the time the stagnation point 
reaches the tip again only one minimum is present. The increase in vorticity 
flux to the rear of the body leads to the formation of regions of recirculatory flow, 
depending on the curvature of the ellipse and the value of the Reynolds number. 
For the circular cylinder (ql = oo), in the steady state arecirculatory region occurs 
first at approximately Re = 3. The flow about an infinitely thin body with q1 = 0 
may have a recirculatory region for any Re > 0. I n  the transient phase recircu- 
latory regions first appear near the tips for thin ellipses and near the centre for 
thick ellipses (Gortler 1948; Wang 1967; Staniforth 1972). I n  figure 3 streamlines 
and lines of equal vorticity are shown for Re = i 5  and ql = 0.1 during the period 
0 < t < 7.  Although a t  tfinal = 7 the 'almost steady state' has not yet been 
reached, the tendency towards a steady-state solution is clearly demonstrated. 
The change in the flow field when time advances from t = 5.39 to t = 7 is so small 

46 F L M  65 
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rl = 0.1 after the abrupt start. 

1 2 3 4 5 6 

t 

FIGURE 5 .  Coefficients for frictional drag and lift vs. time for Re = 15, 
r1 = 0.1 after the abrupt start. 

that plots of flow patterns for these times are indistinguishable. The monotonic 
approach towards a steady state is also demonstrated in the curves for C,, 
C,, C,r, C,, and CLF in figures 4 and 5. The abrupt start of the body during the 
infinitesimal time interval from t = 0 - to t = O + requires infinite values for 
C, as well as for C,, whereas C,, is zero. The unbounded value for C, is not ob- 
vious but can be explained with the aid of (15) and (16).  Since diffusion dominates 
convection a t  that  moment the vorticity and hence C, and C, can be computed 
near t = 0 with a Taylor series expansion in t-*k by means of a boundary-layer 
transformation for the vorticity and the 7 co-ordinate. This was demonstrated 
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FIGURES 6(a)- (e) .  For legend see next page. 

by Staniforth (1972), who found that C, and C, are proportional to t-4 near 
t = 0. Staniforth also pointed out the erroneous theoretical prediction by Wang 
(1967) of zero lift immediately after the impulsive start. Mehta & Lavan (1972) 
also found an unbounded value for C,. The hump in CL arises from the fact that 
CLp and C,, have opposite signs. A t  both early and late times the change in CL is 
dominated by the change in CLp. However, during an intermediate time interval 
C,, is changing so rapidly relative to C', that the change in C, has the same sign 
as the change in CLF. The hump in the C;, curve can be explained by the sym- 
metry associated with the starting conditions. While the values of the force 
coefficients are infinite at t = 0 owing to the impulsive start, the initial symmetry 
results in zero torque. As this symmetry is lost in the early development, C, 
increases rapidly since the vorticity and vorticity gradient are Iarge on the body 
surface. Later, as the initial large vorticity values decrease, C,, decreases toward 
its steady-state value. 

When the Reynolds number is increased to 30 the steady state is approached 
in an oscillatory manner (figure 6). During the transient phase regions of recircu- 
latory flow are formed alternately behind the leading and trailing tips. However, 
vortex shedding does not occur, in the sense that the alternate formation of 

46-2 
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FIGURE 6. Some patterns of streamlines and equi-vorticity lines for Re = 30, ql= 0.1 a t  
various times after the abrupt start. Potential flow at  t = 0. 

recirculatory flow regions is not accompanied by the formation of vortJicity 
extrema. Figure 7 displays time histories of C,, and C',, which also exhibit the 
oscillatory approach to a steady state. 

Dumitrescu & Cazacu (1970) published numerical solutions for steady flows 
past a flat plate with q1 = 0 and a = 45" within a channel for Re = 15 and 25. 
The streamline patterns are similar to those of figure 3 (d )  and figure 6 (j) except 
for the separation a t  the leading edge which is present when yl = 0. Only one 
closed-streamline region exists behind the body in contrast to the case a = go", 
where two steady wake vortices occur. Somewhere in the range 45" < LX < 90" 
the recirculatory region behind the rear tip opens up as a decreases. 

At about Re = 45 the steady state becomes unstable, and the flow changes to 
a stable mode in the form of the KBrmBn vortex street. Although the critical 
Reynolds number of 45 is verified for circular cylinders only, indications are that 
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FIGURE 7. Coefficients for frictional drag and lift vs. time for Re = 30, 
y1 = 0-1 after the abrupt start. 
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FIGURE 8. The establishment of the Kutta condition in viscous fluids for Re = 200. Arrows 
indicate stagnation and separation points. pl,al isp, at 8 = 183". (a) t = 0.004. ( b )  t = 0.006. 
(c) t = 0.012. ( d )  t = 0.036. ( e )  0.060. In  (f), -, t = 0, 0.04; ...-, t = 0.036; ----, 
t = 0.06; -.-, t = 0.1. 

this number might be valid for any blunt body or flat plate at  an angle of attack 
beyond stall. To study the transient phase from t = 0 to a KLrmLn vortex street 
the Reynolds number 200 is selected. 

During the initial phase 0 < t < 0-5 the flow development is basically similar 
to that which occurs for Re = 15 and 30. However, the inertial effects are much 
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k) (N (0 
FIGURE 9. Streamlines in the initial phase of wake development for Re, = 200 and various 
91. 

( a )  ( 6 )  (c) (4 ( e )  (f) (Y) ( h )  (i) 
71 0.1 0.1 0.1 0.2 0.2 0.2 1.0 1.0 1.0 
t 0.300 0.612 1.48 0.315 0.675 1.46 0.300 0.600 1.50 
C'D -4.30 -3.68 -3.56 -3.75 -3.13 -3.09 - 15.6 -3.91 -2.16 
C, -3.59 -3.68 -4.00 -2.42 -3.09 -3.70 -0.846 -0.284 -0.725 
CJf -2.10 -1.90 - 1.83 -2.20 -1.94 - 1-75 -0.989 - 1.26 -1.08 

FIGURE 10. Equi-vorticity lines in the initial phase of wake development 
for R, = 200 and various vl. Conditions for (a)-(i) as in figure 9. 
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I I 

I I 

FIGURE 11. Patterns of streamlines and equi-vorticity lines for Re, = 200, v1 = 0.2 after 
the abrupt start. Potential flow at t = 0. 

(4 ( b )  (c) (4 t 4 
t 1.68 3.17 4.79 6.41 8.84 

- 3.13 - 3.47 - 3.16 - 2.70 - 2.68 
CL - 3.81 - 4.06 - 2.88 - 1.15 - 1.17 
C, - 1.72 - 1.24 - 0.734 - 0.582 - 0.560 

C D  

more pronounced when Re = 200. The local pressure minimum which forms a t  the 
tip for Re = 15 and 30 becomes so strong a t  Re = 200 that the flow separates from 
the surface just behind the tip (figure 8). At first the flow reattaches to the surface 
and forms a small recirculatory region as displayed in figure 8(f)  for ql = 0.1 
a t  t = 0.036. This region grows in extent as, simultaneously, the zero streamline 
moves towards the tip. By t = 0.06 there is again only one rear stagnation point. 
It moves towards the tip, and by t = 0.4 the zero streamline is aligned parallel 
to the chord of the ellipse. This situation is called the Kutta condition for viscous 
media (Thwaites 1960). This transient development represents the formation 
and shedding of a starting vortex, a phenomenon which is well known from flow 
photographs a t  high Reynolds numbers. For rl = 0-1 the computed results show 
a vorticity extremum, which first appears sometime between t = 0.1 and t = 0.2, 
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FIGURE 12. Sequence of streamlines and equi-vorticity lines for the third cycle for Re = 200, 
T~ = 0.1 after the abrupt start. 

( a )  ( b )  (c) ( d )  (el 
t 17.8 20.3 22.4 23.2 24.1 
C D  - 2.46 - 3.01 - 3.13 - 3.10 - 2.97 
CL - 1.62 - 3.09 - 2.56 - 2.12 - 1.82 
C M  - 0.618 -0'931 - 0.657 - 0.501 - 0.381 

to the rear of the trailing tip. This starting vortex is visible as a region of highly 
curved streamlines moving relative to the body (figures 9 and 10). After separa- 
tion of the starting vortex, another region of recirculatory flow forms behind the 
front tip. All these phenomena are modified or do not occur at  all in flows past fat 
bodies. 

After the initial phase a KBrmAn vortex street develops. A sequence of stream- 
lines and lines of equal vorticity for the first cycle is shown in figure 11 for 
ql = 0.2. Here a cycle is defined to be the event which commences with the shed- 
ding of a vortex from the leading tip and ends with the shedding of the next 
vortex from this same point. The flow patterns for yl = 0.1 have been published 
already in Lugt & Haussling (1971). These solutions are quite similar. 

The third cycle for rl = 0-1 is displayed in figure 12. The development and 
the detachment of the vortices are similar to those of the first cycle. By the end 
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t 

FIGURE 13. Drag, lift and moment coefficients vs. time for Re = 200, 
ql = 0.1 after the abrupt start. 

of the third cycle a t  t E 30 the initial vortex has crossed the outer boundary of 
the grid. 

In  figure 13 the drag, lift and moment coefficients are plotted against time t. 
The abrupt start of the body requires infinite values for CD and C', whereas C, 
begins from zero. The Strouhal number, which is defined by 

St = drqU, (38) 

is about 0.23 for the second cycle and 0.25 for the third. In (38) n is the frequency 
of the vortex shedding measured in cycles per unit time. If one relates the 
Strouhal number to the projected plate width d sin a, the values for the second 
and third cycles are 0.163 and 0.177, respectively. 

For ql = 0.2 computations have been made with A0 = &r as well as with 
A0 = &r. The differences in the C,, C, and C;, values between the two cases are 
so small that they cannot be observed on a graphic display. 

In figure 14 the coefficients C,, and C,, are plotted against time for Re = 200 
and ql = 0.1. The surface pressurep, is displayed in figure 15 for the third cycle for 
Re = 200 and ql = 0.1. During this time the pressure at  the stagnation point 
varies between the values 0-533 and 0.558. The value in the inviscid limit is 0.5. 

The information contained in figures 11-15 permits the following physical 
interpretation of the relation between vortex shedding and the force and moment 
coefficients . 

Since CDp, C,, 3 CDR, C,, the main characteristics of the curves for CD and 
C, should be explainable by the behaviour of C,, and C,,. Equations (1 I), (13) 
and (15) show that for a = 45' and for q < 1 the curves of C,, and C,, should not 
deviate much from one another. In  particular, since one vortex is shed from each 
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FIGURE 14. Coefficients for frictional drag and lift ws. time for Re = 200, 
rl = 0.1 after the abrupt start. 
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FIGURE 15. Surface pressure versus 8 for the third cycle for Re = 200, rl = 0.1. 

( a )  ( b )  (c) (4 ( e )  (f) (9) ( h )  
t 16.6 17.4 18.5 19.8 20.7 22.1 23.6 24.5 
C D  -2.77 -2.57 -2.30 -2.75 -3.14 -3.14 -3.06 -2.89 
C, -1 .60 - 1.57 -1.73 -2.71 -3.25 -2.76 - 1.97 -1.75 
C ,  -0.396 -0.156 -0.790 -0.972 -0.871 -0.695 -0.434 -0.378 

tip during one cycle the curves of CDp and C,, should exhibit two periods per 
cycle. However, a brief look a t  figure 13 reveals that the periods for all curves 
coincide with the duration of a cycle, and that the difference between C, and 
C, is quite large. The explanation of this seeming discrepancy may be started 
with a discussion of the local maxima of -C, and -C, (which coincide with 
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those of -CDp and -CLp) at t = 3.2, 12.0, 21-0 and 29.0. A comparison of 
figure 13 with figures 11, 12 and 15 reveals that these local maxima occur just 
when the recirculatory region developed behind the front tip separates from the 
body. This event is defined by the appearance of a vorticity extremum and marks 
the end of the roll-up of vorticity and the beginning of vortex shedding. In  figure 
l l ( b )  and figure 12(b), the extrema are indicated by the tongue-shaped equi- 
vorticity lines. The existence of these extrema is verified by the complete com- 
puter output. The recirculatory region which at the moment of separation reaches 
its largest extent is associated with a maximum pl-difference between the areas 
around 0 = 90" and 8 = 270". They contribute most to C,, and C,, according 
to ( l l ) ,  (13) and (15). At t = 7.5 in figure 13 a local maximum in C, occurs which 
can be related to the moment of separation of the recirculatory region developed 
behind the rear tip. Although this maximum is small compared with the pre- 
viously discussed maxima, the anticipated period of a half-cycle is visible in the 
C, curve for the first cycle. The small size of this maximum is explained by the 
strong influence of the already shed front-tip vortex on the formation and 
separation of the recirculatory region behind the rear tip. If one examines 
C,, by subtracting C,, from C, such a small maximum also exists for C,, a t  
t = 7-5. From the second cycle on, the small local maximum does not appear. It 
has degenerated to a small hump in C, as well as in CDp. This is due to the in- 
fluence of the previously shed vortices. It may be pointed out that in Mehta & 
Lavan's (1972) results for Re, = 1000 and a = 15' the above-mentioned small 
maxima in the C, and C, curves during the first cycle are more pronounced than 
in the present result owing to the smaller influence of viscosity at  Re, = 1000. 

The coefficient of C,, is always negative. This means that the torque tends to 
turn the broadside of the body perpendicular to the main stream. The maxima 
and minima of C, are located a little before those of C,. These occur when the 
surface pressure in the rear has its largest and smallest asymmetric distribution 
with respect to the centre of the body. 

On the basis of experiments (Timme 1957) the decay of vortices in the KBrmBn 
vortex street can be described by the Hamel-Oseen solution for each vortex: 

I constant 
V$ = ~ (1 - exp { - r2/4v(t' - th)}),  vi = 0, r (39) 

where the polar co-ordinates ( r ,  4) with the corresponding velocity components 
(wi, vi) are used. Equation (39) represents the decay of a potential vortex from the 
time t' = t;. This expression represents the lowest mode of plane disturbances 
(Lugt 1968). The vorticity at the vortex centre (where the extremum of vorticity 
is located) is dissipated according t o  

wiz0 = constant/2v( t' - ti). (40) 

For the next higher mode of the spectrum of disturbances the vorticity wi=o 
would decay as (t' - th)-z (Lugt 1968). The numerical data can be checked against 
the analytic prediction. In  figure 16 the decay of the central vorticity of the initial 
vortex for Re = 200 and r ] ,  = 0.1 is displayed with logarithmic scales. The best 
fit to a linear relation between the logarithms of the central vorticity and time is 
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t 

FIGURE 16. Decay of central vorticity of the initial vortex for Re = 200, 
T~ = 0.1. 0, 75  x 60grid; 0, 75 x 80grid in third cycle. 

0 2 4 6 8 10 
t 

FIGURE 17. Comparison of numerical results for Re = 200, T~ = 0.1 with experimental 
data. 0, experiments (Honji); I, uncertainty in 2s]d due to grid spacing. 
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obtained when to = - 0.3 and the slope is - 1. Vortices which are generated after 
the initial vortex behave similarly. Near the outer boundary of the grid, where 
the mesh size increases rapidly, the numerical values deviate from the analytic 
curve. This deviation depends on the mesh size (figure 16). Possibly, the numeri- 
cal solution is not accurate enough to describe the vortex decay in that part of the 
grid. 

For Re, = 1000 Mehta & Lavan's (1972) data for a symmetric airfoil 
with 9 yo thickness are available. A comparison of their results with the present 
ones must take into consideration the difference in a. For a = 15" the potential- 
flow stagnation points are closer to the tips than for a = 45". The evolution of 
the Kutta condition in the initial phase is, thus, confined to a smaller surface area. 
Nevertheless, this condition is established at about the same time ( t  M 0.4) for 
Re, = 1000 and a = 15' as for Re, = 200 and a = 45". A detailed description of 
the pertinent literature on the generation of lift for high Re, (of Prandtl & Tietjens, 
Goldstein and Batchelor) can also be found in Mehta & Lavan's paper. The pro- 
cess of vortex shedding is similar for Re, = 1000 with a = 15" and Re, = 200 
with a = 45" although the spacing of the shed vortices in the direction normal to 
the flow is smaller for a = 15" than for a = 45". 

Honji (1972) compared flow photographs with streamline patterns from the 
authors' numerical data. The result is shown in figure 17, where the position of 
the first vortex behind the front tip is plotted against time. 

The authors would like to thank Mr S. Ohring for his assistance in programming 
the various computer codes. They also owe thanks to J. K. Reingruber and R. T. 
Van Eseltine for devising a code to compute Oberbeck's integral and to one of the 
reviewers who furnished constructive criticism and valuable comments. 
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